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Abstract. The hybrid methods used in the aeroelastic analysis of flutter for long-span bridges 
are computational, but they use coefficients and functions obtained experimentally in a wind 
tunnel. The experimental tests are carried out with a deck sectional model and there are two 
types: an aerodynamic testing for obtaining the aerodynamic coefficients such as drag, lift 
and moment, and an aeroelastic testing for obtaining the flutter derivatives by studding the 
model oscillations under wind action. In this article, some improvements were achieved in the 
experimental phase as well as in the computational phase of the method. The influence of 
variation of the aerodynamic coefficients were studied with Reynold’s number; different sets 
of springs were used to include a wide range of reduced velocities that the flutter derivatives 
depend on; the influence of deformation that the static wind load produces at angle of attack 
along the bridge was studied; finally the variation of the angle of attack was taken into ac-
count to determine the critical flutter speed. These improvements were applied to the sec-
tional and computational models of the future Messina Strait Bridge. 
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1 INTRODUCTION 
The flutter condition on long-span bridges is critical during the design of these structures. 

To avoid experimental tests of completed bridge models in large wind tunnels that are com-
plicated and expensive, it is necessary to use a hybrid method which is computational based 
but needs experimental parameters. Sectional models of the deck are initially tested in an 
aerodynamic wind tunnel of smaller dimensions to obtain the flutter derivatives. These coeffi-
cients are then used in the computational analysis of the aeroelastic behaviour of the com-
pleted bridge. 

 
Figure 1: Forces and displacements of a sectional model. 

Fig. 1 shows the three forces acting on a deck. According to Simiu and Scanlan [1] formu-
lation, these actions are linealized as functions of the displacements and velocities of the sys-
tem for vertical w, lateral v and torsional rotation ϕx  degrees of freedom. As it was explained 
in Jurado and Hernández (2000), the flutter condition is obtained by the computational solv-
ing of a non linear eigen-problem which comes from the dynamic balance equation for the 
deck. 

a a a+ + = = +Mu Cu Ku f K u C u&& & &  (1)

M, C and K are respectively the mass, damping and stiffness structural matrices. fa is the 
aeroelastic forces vector which can be written assembling aeroelastic forces Fy Fz Mx along 
the deck as a stiffness Ka and damping Ca aeroelastic matrices multiplied by the displace-
ments u and velocities  vectors. The expressions of these matrices are u&
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where B is the deck width, ρ is the air density, U is the mean wind speed, K = Bω/U is the 
reduced frequency with ω the frequency of the response and H*

i(K), P*
i(K), A*

i(K) i = 1...6  are 
the flutter derivatives which are functions of K.  

 
In the following sections, the improvements made in the sectional bridge deck tests are ex-

plained as well as the improvements in the computational calculation of the critical flutter ve-
locity for the entire bridge structure. Those advances are applied to the future Messina strait 
bridge model, between Sicily and the Italian peninsula.  
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2 AERODYNAMIC SECTIONAL TEST 
In order to carry out the static analysis of the wind load, we need to obtain previously the 

aerodynamic coefficients of the deck cross section in function of the angle of attack. The 
aerodynamic coefficients are obtained by carrying out a testing of a fixed deck sectional 
model measuring inside the wind tunnel drag force Ds, lift Ls and moment Ms that exerts air 
flow over the model. See Fig. 2.  
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Figure 2: Aerodynamic forces on a sectional model. 

st of all, a scale bridge deck sectional model is built, whose shape should be as similar 
prototype as possible. Fig. 3 shows a sectional model of the Messina Bridge. The mass 
ot need to be scaled to the original bridge since the displacements are constrained and 
re no inertial forces. We simply search for simulating the real boundary conditions that 
ine the air flow around the deck.  

 
Figure 3: Sectional deck model of the Messina Strait Bridge. 

 important problem for obtaining the aerodynamic coefficients is its dependence on 
lds number (Re = ρUB/µ.; ρ: air density, m: air viscosity; U: wind velocity, B: deck 
, see Son and Hanratty [2]. As a consequence the aerodynamic forces and the 
namic coefficients change noticeably when the wind velocity increases as shown in Fig. 

m a certain wind velocity value, the coefficient values are quite stable. It is essential to 
ine the correct air flow velocity in the wind tunnel to obtain the aerodynamic forces. 

hould be carried out by trying with different angles of attack as shown in Fig. 4 for the 
na Strait Bridge. In the graph, it can be observed that with Reynold’s number over 
0, the values do not vary noticeably. Once the velocity is determined, 11m/s for the 
na example which corresponds to Re = 460000, the tests were carried out varying the 
of attack to obtain the aerodynamic coefficient graphs like the one shown in Fig. 5.  
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Figure 4: Variation of the aerodynamic coefficients of the Messina Bridge deck for different angles of attack in 

function of Reynold's number. 
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Figure 5: Aerodynamic coefficients of the Messina Bridge deck. 

3 AEROELASTIC SECTIONAL TEST 

The aeroelastic sectional tests under free vibration consist of sustaining the sectional model 
by springs and make them freely oscillate with and without air flow inside the wind tunnel. A 
detailed explanation of this procedure is found in Jurado, Leon and Hernandez [3]. From the 
displacements of the model, we can calculate the stiffness properties and damping, for exam-
ple with the MITD (Modified Ibrahim [4] Time Domain Method), and from the variation of 
those properties as the wind velocity varies, we can obtain the flutter functions. See Sarkar, 
Jones and Scanlan [5]. 

 
A sectional model requires less similarity conditions than a reduced complete bridge model. 

The most important thing is to maintain the geometric similarity. It is recommended that the 
length of the model is three times its width in order to be considered two-dimensional.  Scales 
less than 1/100 should not be used. The mass and inertia values are not very important for the 
testing even though it is recommendable that they are small enough for not entering errors in 
measuring the wind forces. Therefore there is no need to consider a scale of masses since we 
only try to quantify the wind action in function of the oscillatory movements of the deck. The 
model is elastically sustained using eight to twelve springs: four or eight vertical and four 
horizontal ones (Fig. 6). 
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Figure 6: Sustentation of the sectional model with eight or twelve springs. 

The stiffness of the springs determines the vibration frequencies (2πf = ω) of the system 
that together with the wind velocity in the tunnel, V and the model width, B, determines the 
range of reduced velocities, V*, in order to be able to obtain flutter functions. 

V* = V/fB=2πV/ωB =2π/K    (3)
For example, eighteen flutter functions of the deck model of the Messina strait bridge were 

obtained considering three aerodynamic appendages at the wind shields. Tests were carried 
out varying the angle of attack between -3º, 0º and +3º. Four types of sustaining the model 
with different springs were used in order to vary the natural frequencies of the model and in-
clude a wider range of reduced velocities. For the first three tests, the model was allowed to 
have vertical and horizontal displacements and rotation, while in the fourth one, it was only 
allowed to rotate. The model for the first testing was sustained with twelve springs, and for 
the second and the third tests it was sustained with eight springs. For the fourth testing, the 
model was not allowed to move vertically or horizontally with two bars in each side of the 
model. The mass of the model is 7.47 kg and its torsional moment of inertia is 0.35 kg·m2, 
and the natural frequencies of the system for each sustaining type are the followings. 
 

 fv(Hz) fw(Hz) fϕx(Hz)
Test 1 2.2 2.9 6.8 
Test 2 2.8 1.7 3.5 
Test 3 1.3 1.4 2.0 
Test 4 0 0 1.14 

Table 1:  Natural frequencies of the aeroelastic tests. 

The tests were carried out for wind velocities between 6 and 20 m/s. The minimum and 
maximum reduced velocities with which flutter functions can be obtained are shown in Table 
2. With the tests of three degrees of freedom, 18 flutter functions are obtained simultaneously, 
while with the testing of only rotational freedom, we can only identify the flutter functions, 
A2* y A3* . Fig. 7 shows the obtained flutter functions.  

  (A5*, A6*, H5*, 
H 6*, P 1*, P 4*) 

(A1*, A4*, H1*,  
H4*, P5*, P6*) 

(A2*, A3*, H2*, 
 H3*,P2*, P3*) 

  V*(fv) min V*(fv) max V*(fw) min V*(fw) max V*(fϕx) min V*(fϕx) max
Test 1 4.521 15.07 3.40 11.34 1.45 4.85 
Test 2 3.54 11.79 5.82 19.41 2.82 9.39 
Test 3 7.62 25.38 7.22 24.09 4.90 16.34 
Test 4 - - - - 8.68 28.95 
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Table 2:  Range of reduced velocities for obtaining different flutter functions. 
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Figure 7:  Flutter derivatives of the Messina bridge deck in function of the reduced velocity V* = 2 π / K. 
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4 INFLUENCE OF THE STATIC DEFORMATION ON THE ANGLE OF ATTACK 
A non-linearity not normally taken into account for wind load analyses of long-span 

bridges is the variation of angle of attack due to deck deformation. Rotation about the axis of 
the deck can vary some degrees along the deck; for example, 0.6º for the Messina Bridge [6] 
at the centre span, and 3º for the Akashi Bridge. The deck rotation causes a change in the an-
gles of attack, which affects the aerodynamic coefficient and the flutter coefficient values. 
Calculation of the static solution of the wind is carried out by resolving the equation system 
that relates the forces on the structure and the displacements. This system can be expressed in 
matrix form as: 

[ ]( )· ( )=K u u f α u     (4)

where not only the stiffness matrix, K depends on the displacements, u, but also the wind 
loads, f that vary with the angle of attack, α throughout the deck and therefore also depend on 
u. If this dependency is not taken into account, (4) is converted in a linear problem in which 
the stiffness matrix and the wind force are used for the initial positions of the nodes with null 
angle of attack.  

An approximation of the problem (4) consists of considering the deck deformation in the 
wind forces. 

[ ]· (=K u f α u)     (5)

 
In this approximation, the influence of the wind forces on the structural stiffness is not 

considered. The problem is resolved by iterations. In each step, new forces that depend on the 
obtained displacements in the previous step are defined. The process finishes when the ob-
tained displacements converge, that is to say they do not change too much between two itera-
tions. This method was applied to the static deformation of the Messina Bridge observing 
noticeable differences in the deck displacements for the wind velocity over 50m/s as shown in 
Fig. 8.  
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Figure 8:  Deck displacements of the Messina Bridge at increasing wind velocity. 
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5 FLUTTER ANALYSIS  
In the present work, a coherent matrix formulation has been used for hybrid flutter analysis. 

Jurado and Hernandez [7] explain this formulation stems from the equation (1). Through mo-
dal analysis it is possible to approximate the deck displacements by means of a linear combi-
nation of the most significant mode shapes. Assembling them in columns into the modal 
matrix Φ,  the displacement vector can be expressed as =u qΦ . Each element of the vector q 
represents the participation of each mode shape in the displacement vector u. Pre-multiplying 
(1) by ΦT it becomes 

R R+ + =Iq C q K q 0&& &     (6)
where CR = ΦT (C - Ca) Φ, KR = ΦT (K - K a) Φ and  T =Φ MΦ I  using mass normalized 
modes. Knowing that the solution of this equation has the form q(t) = weµt, becomes 

( )2 t
R R eµµ µ+ + =Iw C w K w 0     (7)

which can be transformed into an eigenvalue problem by adding the identity –µIw+µIw = 0: 
R R teµµ µ

µ
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   (8)

or in short 
( ) teµ

µµ− =A I w 0     (9)

The imaginary part of the eigenvalues µ counts on the frequency ω, while the real part of 
the eigenvalues is associated with the damping ratio ξ. The condition of flutter corresponds to 
the lowest wind speed Uf which gives one eigenvalue with vanished real part. However, the 
problem (9) is non-linear because the matrix A assembles the aeroelastic matrices Ka and Ca. 
These matrices contain the flutter derivatives, which are functions of the reduced frequency K 
= Bω/Ū, and the frequency for each eigenvalue ω remains unknown until the problem has 
been solved.  

 
Figure 9: Relation between the real and imaginary part of the eigenvalues in the flutter analysis not considering 

(left Uf = 100m/s) and considering (right Uf > 120m/s) the variation of angle of attack. 
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An improvement of the bridge flutter analysis consists of taking into account the depend-
ency of the flutter derivatives on the angle of attack at each point of the deck due to the static 
deformation, and its calculation is explained in the previous section. Fig. 9 shows graphs with 
the evolution of the proper values of the problem (9) for increasing wind velocities with or 
without varying the angle of attack. It is observed that the critical flutter velocity increases 
favourably when this effect is considered.  
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6 CONCLUSIONS  

• The wind velocity used for the aerodynamic sectional testing in a wind tunnel should be 
chosen by previously studying the variation of aerodynamic forces in function of Rey-
nold’s number.  

• If various sets of springs are used in the aeroelastic sectional tests, a bigger range of re-
duced velocities can be included in obtaining the flutter derivatives. 

• The static deformation due to the wind load affects considerably the angle of attack at 
high wind velocities close to the flutter. 

• The critical flutter velocity also varies noticeably if the variation of angle of attack along 
the bridge span is taken into account. The flutter derivatives should be chosen according 
to this dependency.  
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