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Abstract: The aerodynamic behavior of a bridge deck section model with a simple single-box
shape was characterized in wind tunnel. At large nose-up mean angles of attack, a torsional
instability arises, outlining a situation in which nonlinear aeroelastic effects may be critical.
Such condition represents an interesting case to develop and validate nonlinear models for the
aeroelastic problem. The experimental campaign allowed both to characterize the aerodynamic
forces using forced motion tests and to study the aeroelastic behavior of the section model, when
excited by actively generated turbulent wind. These aeroelastic tests are used to validate a
numerical time-domain model for aerodynamic forces that takes into account the nonlinearities
due to the reduced velocity and to the amplitude of the instantaneous angle of incidence. Results
are critically analyzed and compared with those obtained with a linear model.
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Nomenclature

y horizontal deck motion, positive along horizontal wind.
z vertical deck motion, positive upward.
θ torsional motion, positive if nose-up.
θm mean angle of attack
V average horizontal wind velocity component.
v turbulent horizontal wind velocity component.
w turbulent vertical wind velocity component.
ρ air density.
B deck chord length.
L sectional model length.
ω circular frequency of oscillation.
V ∗ω reduced velocity V ∗ω = V/(ωB).
V ∗ reduced velocity V ∗ = 2πV ∗ω .
ψ instantaneous angle of attack, defined in eq.(4).
ψ̇ time derivative of ψ.
a∗j j-th torsional flutter derivative.
χθ torsional admittance function.
CD drag force coefficient; force is positive if along wind.
CL lift force coefficient; force is positive if upward.
CM pitching moment coefficient; moment is positive if nose-up.
βj coefficients of the model defined in eq.(5).
i imaginary unit.

1 Introduction

The combination of large deck motion components and large turbulent components in wind
velocity can induce large fluctuations of the instantaneous angle of attack. This is a critical
aspect in aeroelastic analysis since large variations of the angle of attack may lead the deck
to work in conditions in which nonlinear effects of aerodynamic forces are important. In such
situations, linearized approaches (e.g. Jain et al. (1996); Minh et al. (1999); Chen et al. (2000);
Caracoglia and Jones (2003)) show their intrinsic limits, whereas fully nonlinear approaches
are required to model the deck response and they may provide a more accurate estimation of
the instability onset. Nonlinear analyses (e.g. Diana et al. (1995); Minh et al. (1999); Chen and
Kareem (2001); Zhang et al. (2002); Chen and Kareem (2003)) mainly focused on the non-
linear dependence of flutter derivatives and aerodynamic admittance functions on frequency.
Recently Diana et al. (2008b) developed a promising model, based on the aerodynamic hystere-
sis loop concept, which accounts for nonlinear effects due to both frequency and amplitude of
the instantaneous angle of attack.

In order to investigate the aerodynamic nonlinearities and their modeling, a wind tunnel ex-
perimental research was carried out on a deck section model (see Fig.1) at the Department of
Mechanical Engineering of Politecnico di Milano. Experimental tests allowed a detailed aero-
dynamic characterization of a simple single-box shape deck that shows interesting nonlinear
effects that lead to instability at large nose-up mean angles of attack. The wind tunnel tests
allowed to define all the static and dynamic aerodynamic coefficients that are required by linear
and nonlinear numerical modeling of the problem by means of forced motion tests (Diana et al.,
2004). Furthermore, the experimental campaign allowed to measure the aeroelastic response
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to turbulent wind when the deck section model is excited to vibrate under actively generated
turbulent conditions with free motion tests (Diana et al., 2004). During these tests both forces
and displacements of the elastically suspended model were contemporaneously recorded for
different turbulent wind conditions. For this purpose the sectional model was equipped with a
series of pressure taps to measure forces, while displacements were measured by an infrared
measurement system during free motion tests and by laser transducers during forced motion
tests.

A torsional instability at large nose-up mean angle of attack is present for a wide range of
reduces velocities (neagative value of the a∗2 coefficient at θm = 6◦). Aeroelastic effects make
the suspended sectional model prone to a 2-dofs instability, with an unusual torsional-lateral
coupling. The control of the incoming turbulent wind allowed to investigate specific operating
conditions where the deck is working close to instability and the small changes in the wind
turbulence content may drive the deck behavior to cross the stability threshold.

These specific experimental tests, performed around a stable equilibrium configuration (θm ≈
3.5◦), highlight that a large amplitude of the instantaneous angle of attack, may lead the deck to
work between stable and unstable conditions, which result in a dangerous limit cycle. This in-
stability mechanism shows important nonlinear effects and therefore it represents an interesting
case to develop and validate nonlinear numerical models for the aeroelastic problem. Therefore,
such operating condition is used to validate the nonlinear numerical model (Diana et al., 2008b),
whose results are compared with both experimental data and linear model results (Diana et al.,
2005), in terms of forces and displacements.

In Section 2 we summarize the main characteristics of the experimental setup. The aero-
dynamic behavior using a linear approach is critically discussed in Section 3. In Section 4
nonlinear effects on instability are analyzed and modeled. The proposed nonlinear model is
validated and compared with a linear one in Section 5. Final remarks are in Section 6.

2 Experimental setup

Wind tunnel tests were performed at Politecnico di Milano. Tests were designed to achieve
the following goals: complete definition of aerodynamic and aeroelastic forces including effects
of aerodynamic nonlinearities to compare linear and nonlinear approaches; complete aeroelastic
characterization of the suspended section model, in terms of input (turbulent wind) and output
(forces and displacements) for numerical model validations.

2.1 Deck section shape

Following the previous considerations, we studied a single-box deck section with a simple
shape. The deck shape is taken from an actual highway bridge, but without the barriers on
the upper surface. This simplification allows the measure of the aerodynamic forces directly
through the integration of the pressure distribution. The deck section model is 2.91 meters long
and the geometry and main dimensions of the section are reported in Fig.1.

2.2 Forcing systems

Three computer-controlled hydraulic actuators drive the forced motion tests, generating a
multi-degree of freedom harmonic motion around a user-defined average angle of attack. Two
different kinds of motion law were used to measure flutter derivatives and aerodynamic hystere-
sis loops: torsional motion and vertical motion.

In free motion test configuration, the model is suspended in the wind tunnel test section by
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1 m

0.13 m 20 deg

Figure 1: Deck section dimensions and shape

Figure 2: Experimental setup during forced motion tests

means of steel cables. A harmonic wind wave is generated by an active turbulence generator
made by a horizontal array of 10 NACA 0012 profile airfoils, 4 m wide. The airfoils are driven
by two brushless motors giving a pitching motion with a user-defined motion law in terms of fre-
quency contents and amplitude. The turbulence generator is positioned 7 m upwind the model,
while the incoming wind measure is performed one chord before the leading edge by means
of a 4-holes probe that resolves the instantaneous vertical and horizontal wind components. A
partial picture of the experimental setup is given in Fig.2.

2.3 Force measurements

A pressure measurement system was set up in order to prevent inertia forces subtraction
problems during free motion tests (Diana et al., 2004). Pressure is measured on a ring of 78
pressure tabs around the middle section of the sectional model (see Fig.3), at a sampling fre-
quency of 100 Hz. 16 pressure taps are distributes along four lines aligned with the deck axis ,
two in the upper part and two in the lower part, to measure the pressure distribution correlation
in the axial direction. The distribution of the pressure taps was studied to refine the measure
where strong pressure gradient are expected (see Fig.3). An example of pressure correlation
along the deck axis is reported in Fig.4.
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Figure 4: Pressure correlation along a correlation line

5



G.Diana, D.Rocchi, T.Argentini and S.Muggiasca

2.4 Motion measurements

During forced motion tests, two laser transducers measure the deck vertical and torsional
displacement when the model is linked to the oil dynamic actuators. During free motion tests, a
system of three infrared cameras allows a non intrusive measurement of the deck displacements.
The model displacement is reconstructed by measuring the position of 10 markers located on
the upper surface of the deck model. These markers reflect the infrared light that is emitted by
specific stroboscopic lamps triggered with the camera sampling frequency (17 Hz). The marker
position reconstruction is defined by the triangulation of the images recorded by a couple of
cameras after a calibration procedure allowing for the correction of prospective and geometric
aberrations Hartley and Zisserman (2003).

Pressure measurement were performed simultaneously with the camera measurements: since
three different acquisition systems are used, with two different sampling frequencies, synchro-
nization requires a particular care and a trigger signal was used for this purpose.

3 Characterization of aerodynamic forces and aeroelastic behavior

3.1 Linear analysis

The aerodynamic forces, i.e. drag (positive if windward), lift (positive if upward), and pitch-
ing moment (positive if nose-up), are usually separated into mean, self-excited and buffeting
force components. The mean averaged (static) forces per unit length are expressed as

Ls =
1

2
ρV 2BCL(θm); Ds =

1

2
ρV 2BCD(θm); Ms =

1

2
ρV 2B2CM(θm), (1)

where ρ is the air density; V is the mean wind horizontal velocity; B is the deck chord; CD, CL
and CM are the mean lift, drag and pitching moment coefficients; θm is the mean angle of the
section.

Self-excited forces resulting from structural motion can be expressed in terms of flutter
derivatives, which are function of the oscillation frequency . According to the formulation
proposed by Zasso (1996), the pitching moment per unit length is:

Mse =
1

2
ρV 2B2

(
−a∗1 ·

iωz

V
− a∗2 ·

iωθB

V
+ a∗3 · θ + a∗4 ·

π

2V ∗2ω
· z
B

−a∗5 ·
iωy

V
+ a∗6 ·

π

2V ∗2ω
· y
B

)
, (2)

where a∗j (j = 1 . . . 6) are the torsional flutter derivatives; y, z and θ are the horizontal, vertical
and torsional displacements; ω is the circular frequency of oscillation; i is the imaginary unit;
V ∗ω = V/(ωB) is the reduced velocity. Analogous formulations hold for lift and drag forces, in
order to define the complete set of 18 flutter derivatives (Zasso, 1996).

Buffeting forces, resulting from turbulent wind components, can be expressed in terms of
aerodynamic admittance functions, which are function of the wind oscillation frequency. In this
case, the pitching moment per unit length is given by:

Mb =
1

2
ρV 2B2

(
χθw

w

V

)
, (3)

where χθw is the complex torsional admittance function; w is the vertical turbulent wind velocity
fluctuation. Analogous formulations hold for lift and drag forces (Diana et al., 2005).
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Figure 5: Static coefficients at different θm

For the examined cross section, the static aerodynamic force coefficients as a function of the
angle of attack are shown in Fig.5. We can remark the following characteristics: drag coefficient
has a minimum at θm = 1◦; lift coefficient has a positive slope

(
∂CL

∂θ
> 0
)

up to θm = 9◦ where
it has a maximum (stall) followed by a negative slope; moment coefficient is positive at θm = 0◦

and it has a positive slope up to θm = 6◦, where it stalls; moment stall occurs before lift stall.
These characteristics may lead to a torsional instability in quasi-steady conditions.

If we explore the force dependence upon the frequency of excitation and we analyze the self-
excited forces, focusing on the effects of torsional displacement θ, according to equation (2),
a negative value of the a∗2 coefficient results in a direct negative damping term, which reduces
stability margins.

Flutter derivatives a∗2 and a∗3, shown in Fig.6, highlight that torsional instability for large
angles of attack is present in at large reduced velocities (a∗2 → ∂CM

∂θ

∣∣
θm

for V ∗ → ∞), and it
decreases with decreasing reduced velocity, up to disappearing at V ∗ = 6 for θm = 6◦.

Analogous considerations can be done for buffeting forces. Considering the χθw function
and interpreting w

V
as an instantaneous angle of attack, it is clear that its effect is analogous

to an instantaneous angle of attack ż
V

. This fact is confirmed by comparing the trend of the
a∗1 coefficient with the one of the real part of χθw, as shown in Fig.7. The linear aerodynamic
behavior is clearly identified by θm and by the slopes of static coefficients around the value of
θm.

3.2 Nonlinear effect of instability threshold

Torsional instability is experienced not only when the mean angle is sufficiently large to have
a negative a∗2, but also when the instantaneous angle of attack, due to both deck motion and
turbulent wind, reaches large oscillation amplitudes around a static value within the stability
range. This phenomenon is clearly pointed out by wind tunnel tests performed on the deck
section model elastically suspended and run over by an actively generated turbulent wind.

The structural characteristics of the oscillating section model in no-wind conditions are re-
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Figure 6: Torsional flutter derivatives at different θm vs. V ∗
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Mode Type Frequency Mass Damping %
1 Horizontal 0.74 Hz 68 Kg 0.23
2 Torsional 0.99 Hz 8.3 Kgm2 0.30
3 Vertical 1.09 Hz 68 Kg 0.94yz

θ


1

=

 1
−0.15
0.38

 ,
yz
θ


2

=

0.025
0.005

1

 ,
yz
θ


3

=

 0
1

0.15


Table 1: Modal properties and eigenshapes of suspended section model

ported in Tab.1. These values were obtained analyzing the decay of free motion tests experi-
enced by the aeroelastic model starting from imposed initial motion condition in still air. Similar
analysis performed under mean wind flow conditions highlighted the aeroelastic effects on the
values of mean angle θm, frequencies and torsional damping. These effects are reported as a
function of the mean velocity V in Fig.8. An increasing wind speed has a twofold effect: on
one side, an increase of the mean angle of equilibrium due to the positive value of the moment
coefficient (nose-up); on the other side, there is a softening in the torsional frequency, which
collapses toward the horizontal one, giving rise to a 2-dofs instability close to V = 8 m/s,
where the total damping (structural plus aerodynamic) becomes negative.

Considering a mean wind velocity of 7 m/s, the model assumes a mean angle θm = 3.5◦

that, according to a linear approach and previous results, guarantees a stable behavior for any
turbulent wind condition. In fact, by superimposing a harmonic turbulent wind component,
such to get an instantaneous wind angle w

V
= 0.5◦, with frequency of 0.7 Hz and reduced

velocity V ∗ = 10, the model oscillates with small amplitudes around the static angle of attack,
as shown in Fig.9(a). However, with a doubled wind angle w

V
= 1◦, the response is about ten

times greater, as shown in Fig.9(b).
In the latter case, the amplitude of the variation of the instantaneous angle of attack is large

enough to drive the deck model in and out of the instability range, resulting in very large tor-
sional oscillations. This behavior is strongly nonlinear and it cannot be foreseen by a linear
approach.

4 Nonlinear analytical formulation

4.1 Aerodyanamic hysteresis loops

A founding hypothesis of the linear approach is that only small perturbations of the angle
of attack occur around a static configuration. However, to simulate the experimental instability
onset, we pointed out the necessity of considering the effects induced by a large variation of the
angle of attack.

An interesting nonlinear analytical representation of the aerodynamic forces by means of
hysteresis loops has been proposed by Diana et al. (2007, 2008a,b). In Fig.10, we show the
effect of the angle of attack amplitude on the pitching moment at V ∗ = 10, obtained with
harmonic forced torsional motion tests, by drawing the aerodynamic moment coefficient ver-
sus the angle of rotation θ. The area enclosed by the loops represents the work done by the
aerodynamic moment in one oscillation cycle and it is an index to assess whether energy is
dissipated or pumped into the system. The direction of rotation of the loop indicates the rela-
tive phase between force and displacement and therefore the energy sign: clockwise (+ circles)
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Figure 8: Aeorelastic effects of mean wind velocity: mean angle θm, natural frequencies and torsional damping

11



G.Diana, D.Rocchi, T.Argentini and S.Muggiasca

0.5 1 1.5 2
0

0.05

0.1

[Hz]

y 
[m

]

0.5 1 1.5 2
0

0.05

[Hz]

z 
[m

]

0.5 1 1.5 2
0

5

10

15

[Hz]

θ 
[d

eg
]

(a) w
V = 0.5◦ at 0.7 Hz

0.5 1 1.5 2
0

0.05

0.1

[Hz]

 y
 [m

]

0.5 1 1.5 2
0

0.05

[Hz]

z 
[m

]

0.5 1 1.5 2
0

5

10

15

[Hz]

θ 
[d

eg
]

(b) w
V = 1◦ at 0.7 Hz

Figure 9: Frequency response of the aeroelastic model under two different turbulent wind conditions

indicates energy pumping, anticlockwise (- circles) indicates energy dissipation. Such rep-
resentations permit a phenomenological interpretation of the torsional instability: loops with
small amplitudes of oscillation (up to 2.5◦) dissipate energy (upper plots of Fig.10); increasing
the amplitude, the hysteresis loop twists generating an energy pumping contribution beside the
dissipation one. This contribution increases with larger amplitudes and, for sufficiently large os-
cillations, it cancels out the dissipative part of the loop, pumping energy into the system during
almost all the cycle.

The nonlinear model (Diana et al., 2008a) lies on the hypothesis that aerodynamic aeroelastic
and buffeting forces are function of the instantaneous angle of attack ψ, defined as:

ψ = θ + tan−1

(
b∗θ̇ − ż + w

V + v − ẏ

)
, (4)

where b∗ is a constant length, assumed to be B/2. Once defined ψ, hysteresis loops can be
represented as functions of it.

The above assumption implies that, for a given instantaneous angle of attack, forces are
defined independently on whether ψ is generated by either deck motion or turbulent wind or by
a combination of the two. In Fig.11, we compare hysteresis loops resulting from two differently
generated variations of ψ, with equal amplitudes and reduced velocity: results from imposed
torsional motion tests are shown in Fig.11(a), while those from imposed turbulent vertical wind
component are shown in Fig.11(b). Loops at the same V ∗ show good agreement supporting
the hypothesis; a remark about the V ∗ = 8 is that the loop due to turbulent wind has a smaller
amplitude due to the physical limits of the active turbulence generator which does not allow for
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Figure 10: Hysteresis loops of moment coefficient considering different amplitudes of the angle of attack at V ∗ =
10, θm = 4◦
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large amplitudes of the angle of attack at high frequencies.
The dependency on the amplitude of torsional oscillation, for the moment coefficient, is

shown in Fig.12 for the same θm and V ∗: using ψ instead of θ, the complex shapes of Fig.10
become more regular and the loops rotate in the same direction, resulting in an easier way to
identify the parameters of the numerical model that will be presented in the next paragraphs.
Analogous considerations hold for the drag and lift coefficients.

4.2 Nonlinear time-domain model of aerodynamic hysteresis loops

This nonlinear framework is suitable for formulating nonlinear models (Diana et al., 2007,
2008a,b). The proposed nonlinear time-domain model is a nonlinear polynomial function of the
dynamic angle of attack ψ and of its time derivative whose parameters are identified using the
experimental data obtained at different reduced velocities with the torsional forced harmonic
motion tests at large oscillation amplitude. The expression for moment coefficient is:

CM(ψ, ψ̇) = Cstatic
M (ψ) + . . .

β1 + . . .

β2ψ + β3ψ̇ + . . .

β4ψ
2 + β5ψψ̇ + . . .

β6ψ
3 + β7ψ

2ψ̇,

(5)

where βj (j = 1 . . . 7) are constant parameters andCstatic
M is the static coefficient. βi coefficients

are identified using a weighted least square curve fitting algorithm that minimizes the error
between the experimental hysteresis loops and the ones produced by the numerical model using
a wide range of reduced velocities (V ∗ = 7÷ 200). During the identification procedure, higher
weight was assumed for lower operational reduced velocities.

Such a model, however, is not able to reproduce the nonlinear effect of the instability thresh-
old presented in paragraph 3.2. The dependency of instability on the amplitude of the angle of
attack ψ needs a model that has a rheologic element able to simulate the strong nonlinear effect
of amplitude on stability. This can be achieved introducing the rheologic element schematically
depicted in Fig.13. In this scheme, the modeled moment coefficient is equal to the force trans-
mitted to the ground by the equivalent mechanical system sketched in Fig.13. The rheologic
element is activated only if the following conditions are met:

1. ψ > ψthreshold when ψ̇ becomes negative

2. ψ̇ < 0

Condition 1 is an on-off switch that activates a viscous element with negative damping, which
remains active till condition 2 is valid. This asymmetric behavior is clearly evidenced by the
shape of pitching moment hysteresis loops in Fig.12.

5 Model validation

5.1 Validation in the stability range

Since the proposed approach is aimed to define a methodology to foresee the aeroelastic
behavior of bridges in real operating conditions, the model is validated around a stationary
configuration of θm ≈ 0◦. To achieve this configuration, and to maintain simultaneously a
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Figure 11: Moment coefficient vs. ψ, at different V ∗
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sufficiently large wind velocity (8 m/s), the no-wind starting configuration was properly set
with a negative pitch, letting the positive aerodynamic moment to bring the model at θm ≈ 0◦.

In Fig.14 we present the results of the identification procedure for all the three aerodynamic
coefficients at several V ∗, obtained using forced torsional motion tests.

The model is then validated against aeroelastic free motion tests, comparing aerodynamic
forces and displacements. In addition, results obtained with a linear approach using flutter
derivatives and admittance functions are compared to stress the need for nonlinear model-
ing. Two different test cases are considered: in case A the suspended model is forced by a
mono-harmonic turbulent vertical wind component w with amplitude w

V
= 3◦ at a frequency of

0.37 Hz; in case B the suspended model is forced by a mono-harmonic turbulent wind w with
amplitude w

V
= 3.8◦ at a frequency of 0.57 Hz. Experimental measurements of the vertical tur-

bulent wind components for both cases are reported in Fig.15. The horizontal wind component
is in both cases equal to 8 m/s.

Case A is an interesting test-case because the second order harmonics of the aerodynamic
forces excite the horizontal mode, while third order harmonics excite the third mode. Experi-
mental and numerical comparisons are shown in Figs.16 and 17.

In case B a large dynamic angle of attack is created by the combination of wind and deck
motion, and the second harmonic generated by nonlinearity of drag excites the vertical mode.
Experimental and numerical comparisons are shown in Figs.18 and 19.

As a general comment, in both test-cases numerical simulations show how the linear ap-
proach based on the flutter derivatives and admittance function formulation is not able to predict
the actual response with second and third order harmonics. Focusing on the first harmonic, drag
force is underestimated, since the aerodynamic coefficients are considered at the static mean
angle of attack and, in the case of drag, the curve has an almost null slope. The presence of
a second harmonic in the drag force is due to the projection of the first harmonic of the lift
along the local reference system. On the contrary, the nonlinear approach is able to reproduce
the nonlinear effects, generated by large dynamic angles of attack, which strongly interact with
structural coupling.

5.2 Validation in the instability range

In order to show the need for the rheologic element, in Fig.20 we present the results of the
identification procedure for the aerodynamic moment coefficients at several amplitudes of the
angle of attack around a static value of θm = 3.5◦.

Hysteresis loops in Fig.20(a) are obtained using the polynomial model and excluding the rhe-
ologic element, while loops in Fig.20(b) are obtained including it and they can bre compared
with the experimental values of Fig.12. It is evident that the polynomial model alone cannot re-
produce the asymmetry of the aerodynamic coefficients, which is responsible for the amplitude
driven instability, as already discussed in paragraph 4.1. On the contrary, the introduction of the
rheologic element allows to include and simulate effectively this effect.

The amplitude driven rheologic element in combination with the polynomial terms allows
to reproduce the nonlinear aeroelastic behavior described in paragraph 3.2 as well. Numerical
results presented in Fig.21 show how the nonlinear dependence on the amplitude of the angle
of attack ψ is reproduced. In Fig.21(a) it is shown the deck torsional motion with a vertical
turbulent wind excitation angle of 0.5◦, whereas in Fig.21(b) it is reported the torsional motion
due to a wind angle with double amplitude, which clearly points out the nonlinear behavior of
the deck.
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Figure 14: Numerical hysteresis loops compared with the experimental ones at V ∗ = 7 (pointed line), V ∗ = 10
(solid line), V ∗ = 50 (diamonds)
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Figure 15: Experimental turbulent vertical wind components for case A and B. In both cases the horizontal com-
ponent is equal to 8 m/s
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Figure 16: Case A: global displacements
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Figure 17: Case A: forces in a reference system fixed to the deck
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Figure 18: Case B: global displacements
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Figure 19: Case B: forces in a reference system fixed to the deck
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(a) Loops without the rheologic element
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(b) Loops with the rheologic element

Figure 20: Effect of the rheologic element on the numerical simulation of the hysteresis loops of Fig.12
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Figure 21: Numerical frequency response of the aeroelastic model under two different turbulent wind conditions
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6 Concluding remarks

The aerodynamic instability was studied on a deck section model by specific tests performed
in wind tunnel and by numerical simulations. The instability driven by the stall of the moment
coefficient may be reached because of large variations of the instantaneous angle of attack due
to the combination of deck motion and turbulent wind components. The comparison of analyses
with both a linear and a nonlinear approaches highlights the necessity of considering the nonlin-
ear effects of large variations of the instantaneous angle of attack, during both experimental tests
and numerical simulations. The representation of aerodynamic forces by means of hysteresis
cycles appears to be an effective tool for taking into account aerodynamic nonlinearities.
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