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An analytical model to predict the lift on a circular cylinder undergoing forced rotational
oscillations in the lock-on regime is developed. Lift coefficient data are obtained from numer-
ical simulations of the flow field over a rotationally oscillating circular cylinder. Higher-order
spectral analysis, namely, the trispectrum, is applied to the data to characterize the nonlinear
coupling between the vortex shedding frequency and its third harmonic. Based on this analysis,
it is determined that the forced van der Pol equation should be used to model the lift coefficient
on the rotationally oscillating cylinder in the lock-on regime. The developed analytical model
for the lift is validated by comparing its time and frequency domain characteristics with those
of the numerically simulated data.

1 Introduction

Oscillating drag and lift forces on circular cylinders are directly related to the vortex shed-
ding pattern in their wakes. In various applications, the interest would be in reducing these
forces, reducing vortex induced-vibrations, or augmenting the lift component. Different forcing
conditions have been shown to significantly affect the wake pattern and associated forces on
the cylinders. One such condition is the rotational oscillation forcing which has been shown
to effectively modify the wake characteristics. Studies by Tokumaru and Dimotakis[1], Lu and
Sato[2] and Chou[3] on rotationally oscillating cylinders revealed a significant drag reduction
under specific forcing conditions. Choi et al.[4] showed that the maximum amplitude of the lift
coefficient is increased in the lock-on region.

The optimal approach to assess effects of cylinder forcing on the wake structure and lift and
drag forces would be a time-domain numerical simulation of the fluid flow and the structure’s
motions. On the other hand, and for different purposes such as optimization of the forcing
parameters, analytical models have been proposed as a more efficient alternative for determining
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fluctuating forces on oscillating circular cylinders. One of the first models proposed for vortex-
induced vibrations of circular cylinders is the one by Hartlen and Currie[5]. In that model, the
lift, represented by a Rayleigh equation, is linearly coupled to the cylinder’s motion. Using a
combination of approximate solutions of the Rayleigh and van der Pol equations and amplitude
and phase measurements of higher-order spectral moments, Nayfeh, Owis and Hajj [6] showed
that the lift coefficient,l, on stationary circular cylinders should be modeled by the self-excited
van der Pol equation. The extension of such models to develop analytical models for forces
on oscillating cylinders would be very beneficial for modeling vortex-induced vibrations, drag
reduction or lift augmentation.

In this work, we develop an analytical model for the prediction of the lift on a rotationally
oscillating cylinder. Numerical simulations are performed to generate a database from which
parameters for the developed models are determined. Amplitude and phase measurements from
higher-order spectral parameters are matched with approximate solutions of the models to char-
acterize the nonlinearities in the model and determine these parameters.

2 Numerical Simulation

Direct Numerical Simulations of the unsteady incompressible Navier-Stokes equations for
different cases of the flow over a rotationally oscillating circular cylinder were performed. All
simulations were performed atRe = U∞D/ν = 100. The computational domain extended 5
cylinder diameters upstream, 10 diameters cross-stream on each side and 20 diameters down-
stream. The domain was staggered by multiple blocks with a quadratic cell type mesh, in
order to provide more faces and to enhance the cell communication and computational ac-
curacy. The cylinder wall was padded with a boundary layer mesh to accurately capture the
viscous layer. The first cell thickness is 0.0002D and with a linear growth rate of 1.05. Imposed
cylinder rotations were determined by two parameters, namely, the nondimensional amplitude,
θ̇maxD/2U∞ = 0.5 whereθ̇max is the maximum forcing angular velocity, and the forcing fre-
quencyffU∞/D = 0.1643 , whereff is the dimensional forcing frequency.

3 Higher-Order Spectral Moments

Traditional signal processing techniques used in data analysis are based on second-order
statistics, such as the power spectra which are the Fourier transforms of the second-order corre-
lation functions. These quantities yield an estimate of energy content of the different frequency
components in a signal or the coherence between equal frequency components in two signals.
In many cases, higher-order spectral moments can be used to obtain more information from sig-
nals or time series. In nonlinear systems, frequency components interact to pass energy to other
components at their sum and/or difference frequency. Because of this interaction, the phases of
the interacting components are coupled. This phase coupling can be used for the detection of
nonlinear interactions between frequency components in one or more time series. Faced with
an unknown system in terms of its nonlinear characteristics, these moments can be applied to
identify quadratic and cubic nonlinearities. The bispectrum [7, 8, 9], which is the next higher-
order moment to power spectrum, has been established as a tool to quantify the level of phase
coupling among three frequency components and thus identify quadratic nonlinearities. Of par-
ticular interest to this work is the trispectrum [10], which is the next higher-order moment to
the bispectrum, and which is used to detect and characterize cubic nonlinearities expected to be
a part of the lift coefficient.

The higher-order spectral moments, introduced above, are multi-dimensional Fourier trans-
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forms of higher-order statistical moments. Ifx(t) is a real random process and its moments up
to ordern are stationary, one could define thenth-order moment function

mn(τ1, ..., τn−1) = E{x(t)x(t + τ1)...x(t + τn−1)} (1)

whereE{} represents ensemble averaging andτ1, ..., τn−1 represent time differences. By Fourier
transforming the second, third and fourth-order moment functions, one obtains, respectively, the
auto-power spectrum, auto-bispectrum and auto-trispectrum [10]. The hierarchy of higher-order
moment spectra is then expressed as

Sxx(f) = lim
T→∞

1

T
E[X∗

T (f)XT (f)] (2)

Sxxx(f1, f2) = lim
T→∞

1

T
E[X∗

T (f1)X
∗
T (f2)XT (f1 + f2)] (3)

and
Sxxxx(f1, f2, f3) = limT→∞ 1

T
E[X∗

T (f1)X
∗
T (f2)X

∗
T (f3)XT (f1 + f2 + f3)] (4)

whereXT (f) is the Fourier transform ofx(t) defined over a time durationT , and the superscript
* is used to denote complex conjugate. The higher-order spectral moments and their normalized
counterparts are capable of identifying nonlinear coupling among frequency components and
quantifying their phase relations[7, 8, 9]. In this work, we will stress the use of the auto-
trispectrum to determine the phase relation between the vortex shedding component and its third
harmonic. This relation will be used in determining the parameters of the proposed analytical
model.

4 Lift Modeling

The lift coefficient on a circular cylinder undergoing forced rotational oscillations in the
lock-on regime is modeled by the van der Pol oscillator that is externally excited by a harmonic
function and represented by

l̈ + ω2
s l

2 − εµv l̇ + εαvl
2l̇ = εFcos(Ωt + τe) (5)

whereωs is the shedding frequency,µv and αv represent the linear and nonlinear damping
coefficients, andF andτe are respectively the amplitude and phase of the external harmonic
force. The forcingF , µv andαv are scaled to the same orderε.

Using the method of multiple scales [11, 12], an analytical approximate solution is derived
for Eq. 5 under the primary resonance condition

Ω = ωs + εσ (6)

whereσ is the external detuning parameter. The approximate solution is written as

l(t) ≈ acos(Ωt + τe − γ) + a3αv

32ωs
cos(3(Ω + τe − γ) + π

2
) (7)

whereγ is given by
γ = εσt + τe − β (8)

In Eq. 7, the amplitudea and phaseγ are governed by

ȧ = µv

2
a− αv

8
a3 + F

2ωs
sinγ

aγ̇ = aσ − F
2ωs

cosγ
(9)
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An examination of the expression forγ reveals its dependency on the phase of excitation,τe,
and the phase of the response,β. Whena andγ are constants in Eq.9, i.e., for steady-state
oscillations, the solution given in Eq.7 represents a periodic motion which can be written in
complex form as

l(t) ≈ a
2
{ei(Ωt+τe−γ) + e−i(Ωt+τe−γ)}+ a3αv

64ωs
{e3i(Ωt+τe−γ)+i π

2 + e−3i(Ωt+τe−γ)−i π
2 } (10)

The Fourier transform ofl(t) represented byL(ω) is then given by

L(ω) ≈ a
2
{ei(τe−γ)δ(ω − Ω) + e−i(τe−γ)δ(ω + Ω)}

+a3αv

64ωs
{e3i(τe−γ)+i π

2 δ(ω − 3Ω) + e−3i(τe−γ)−i π
2 δ(ω + 3Ω)} (11)

Examining the expression forL(ω), it is noted that the solution contains components with
frequencies atΩ and3Ω. The amplitudes and phases of these components are given by

L(Ω) =
1

2
aei(τe−γ) (12)

and

L(3Ω) =
a3αv

64ωs

e3i(τe−γ)+i π
2 (13)

The auto-trispectrum is then used to relate the two components,Ω and3Ω. Using the defini-
tion of the trispectrum, we obtain

Sllll(Ω, Ω, Ω) ≈ a6αv

512ωs

ei π
2 (14)

Equation14 shows that the magnitude of the auto-trispectrum can be used to determine the
coefficient of the cubic nonlinearityαv. The phase of the auto-trispectrumSllll(Ω, Ω, Ω), given
by φ(3Ω)− 3φ(Ω), and equal toπ

2
, should be used to establish the validity of the reduced-order

model. The normalized auto-trispectrum, namely, the auto-tricoherence[6], should be used to
determine the extent of cubic coupling between the two frequency componentsΩ and3Ω and its
level should be used to establish a level of confidence in the estimated values of the magnitude
and phase of the auto-trispectrum and any derived parameters.

For the forced van der Pol equation with primary resonance, the steady state value of ampli-
tudea and phaseγ can be obtained by settingȧ = 0 andγ̇ = 0 in Eq. 9, i.e.

0 = µv

2
a− αv

8
a3 + F

2ωs
sinγ

0 = aσ − F
2ωs

cosγ
(15)

In order to determine the damping and nonlinear coefficients, and the external force parameters
in the forced van der Pol equation from the amplitudes and phases of the Fourier components
in the time series, the lift coefficient is written as

l(t) ≈ acos(Ωt + τe − γ) + a3cos(3(Ωt + τe − γ) + π
2
) (16)

By comparing Eq.16with Eq. 7, one obtains

αv =
32ωsa3

a3
(17)
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Alternatively and as explained above,αv can be obtained from the magnitude of the auto-
trispectrum. Rearranging Eq.14, one obtains

αv =
512ωs |Sllll(ωs, ωs, ωs)|

a6
(18)

From the Fourier transform ofl(t) at frequencyΩ, i.e. Eq.12, one obtains

τe − γ = Φ(L(Ω)) (19)

whereΦ(L(Ω)) is the phase angle ofL(Ω). Therefore,

γ = τe − Φ(L(Ω)) (20)

Substituting Eq.20 in Eq. 15yields

F =
(Ω− ωs)2ωsa

cos(τe − Φ(L(Ω)))
(21)

and

µv =
1

4
αva

2 +
F

aωs

sin(τe − Φ(L(Ω))) (22)

Thus, givenτe, one can identifyF , andµv.

5 Results and Discussion

Vorticity contours in the wake of the cylinder subjected to rotational oscillations under lock-
on conditions are presented in Fig.1. The figure clearly shows a vortex shedding pattern that is
similar to the one observed when the cylinder is held stationary as presented in Fig.2.

Figure 1:Vorticity contours in the wake of the rotationally oscillating cylinder. Forcing condition:θ̇maxD/2U∞ =
0.5.,ffU∞/D = 0.1643.

The above notion is further strengthened by the lift and drag time series in the lock-on case,
presented in Fig.3. Both coefficients are characterized by perfect sinusoidal variations. The lift
has a major frequency that corresponds to the vortex shedding frequency. The major frequency
component in the drag is twice that of the lift. This sinusoidal behavior indicates a perfect
vortex shedding as would be observed in the stationary case.
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Figure 2:Vorticity contours in the wake of the stationary cylinder.St = fsU∞/D = 0.1747.
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Figure 3:Time histories of the drag and lift coefficients on the rotationally oscillating cylinder. Forcing condition:
θ̇maxD/2U∞ = 0.5.,ffU∞/D = 0.1643.

Spectral analysis was performed on the lift time series that is plotted in Fig.3. The power
spectrum showed that the major frequency component is at that of the forcing frequency. Values
of the spectral amplitudes at the vortex shedding frequency and its third harmonic were also
determined from the power spectrum. These values were then used to determineαv. The
amplitude and phase of the auto-trispectrum were used to verify this value and to determine the
phase relation between the vortex shedding component and its third harmonic. The phaseγ was
then determined. This value was used to determineF , andµv as explained above. The results
are presented in Table 1.

van der Pol ParameterEstimated Value
ωs/2 π 0.1747
Ω/2 π 0.1643
µv 0.08408
αv 0.1356
F 0.212
γ 0.0047 rad

Table 1:Estimated model parameters

Validation of the representative model and its parameters is demonstrated by comparing its
integrated time series with the one obtained from the original numerical simulation. This com-
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parison is presented in Fig.4. Obviously, the derived model predicts the sinusoidal characteris-
tic of the vortex shedding. This is further confirmed by the perfect matching of the amplitudes
of the vortex shedding frequency and its third harmonic as obtained from the model and the
numerical simulation as presented in Fig.5. The observed difference at the high frequencies
is relatively insignificant when comparing it with the spectral amplitudes of the vortex shed-
ding frequency. This difference may be related to the level of accuracy in the integration of the
analytical model.
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Figure 4:Comparison of the analytically modeled (blue line) and numerically simulated (red dashed line) lift time
series.
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Figure 5:Comparison of the spectra of the analytically modeled (blue line) and numerically simulated (red dashed
line) lift coefficients.

6 Conclusions

In this work, an analytical model for the prediction of the lift on a rotationally oscillating
cylinder in the lock-on regime has been developed. The parameters of the developed model
were determined from a numerical simulation of the flow field. Higher-order spectral analysis
of the lift data yielded relevant quantities that were matched with approximate solutions of the
assumed model. Based on this analysis, it is determined that the forced van der Pol equation
could be used to model the lift coefficient on the rotationally oscillating cylinder in the lock-on
regime. The validity of the model has been demonstrated by comparing time and frequency do-
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main characteristics of the analytically modeled lift coefficient with the numerically simulated
data.
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